Regulation of glutathione synthesis via interaction between glutamate transport-associated protein 3-18 (GTRAP3-18) and excitatory amino acid carrier-1 (EAAC1) at plasma membrane.
نویسندگان
چکیده
Regulation of the cysteine transporter known as excitatory amino acid carrier-1 (EAAC1) for intracellular glutathione (GSH) content was investigated using human embryonic kidney (HEK) 293 cells as a model system. GSH content was significantly reduced by l-aspartate-beta-hydroxamate (50-250 microM), an inhibitor of both EAAC1 and GLT1, both of which are transporters to take up cysteine, whereas dihydrokainate (1-100 microM), a specific inhibitor of GLT1, failed to do so. This indicates that EAAC1 is involved in GSH content in HEK293 cells. We examined the effect of glutamate transport-associated protein 3-18 (GTRAP3-18), which is capable of interacting with EAAC1. The GSH content decreased when the GTRAP3-18 protein level at the plasma membrane was increased by methyl-beta-cyclodextrin (250 microM), rendering the cells more vulnerable to oxidative stress. Intracellular GSH increased when the GTRAP3-18 protein level at the plasma membrane was decreased by antisense oligonucleotides, rendering the cells more resistant to oxidative stress. Furthermore, we found that the increase in GSH content produced by stimulating protein kinase C, a translocator and activator of EAAC1, was inhibited by an increase in cell surface GTRAP3-18 protein. These results show GTRAP3-18 to negatively and dominantly regulate cellular GSH content via interaction with EAAC1 at the plasma membrane.
منابع مشابه
Inhibition of GTRAP3-18 May Increase Neuroprotective Glutathione (GSH) Synthesis
Glutathione (GSH) is a tripeptide consisting of glutamate, cysteine, and glycine; it has a variety of functions in the central nervous system. Brain GSH depletion is considered a preclinical sign in age-related neurodegenerative diseases, and it promotes the subsequent processes toward neurotoxicity. A neuroprotective mechanism accomplished by increasing GSH synthesis could be a promising appro...
متن کاملA dominant role of GTRAP3-18 in neuronal glutathione synthesis.
Glutathione is an essential reductant which protects cells and is reduced in neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. Neurons rely mainly on extracellular cysteine for glutathione synthesis and a cysteine transporter termed excitatory amino acid carrier 1 (EAAC1). However, the mechanisms underlying neuronal cysteine uptake have remained elusive. Herein, we show ...
متن کاملEffect of early weaning on the expression of excitatory amino acid transporter 1 in the jejunum and ileum of piglets
The present study aimed to compare the expression levels of excitatory amino acid transporters (EAATs) and growth status of piglets weaned at 10‑20 days after birth with suckling piglets. A total of 40 hybrid piglets (Landrace x Large White x Duroc) born to 40 different sows, with similar body weight were selected for the present study. They were randomly divided into two groups (n=20 per group...
متن کاملGTRAP3-18 serves as a negative regulator of Rab1 in protein transport and neuronal differentiation
Glutamate transporter associated protein 3-18 (GTRAP3-18) is an endoplasmic reticulum (ER)-localized protein belonging to the prenylated rab-acceptor-family interacting with small Rab GTPases, which regulate intracellular trafficking events. Its impact on secretory trafficking has not been investigated. We report here that GTRAP3-18 has an inhibitory effect on Rab1, which is involved in ER-to-G...
متن کاملPhorbol myristate acetate-dependent interaction of protein kinase Calpha and the neuronal glutamate transporter EAAC1.
Sodium-dependent transporters clear extracellular glutamate in the mammalian CNS. Activation of protein kinase C (PKC) rapidly increases the activity of the neuronal glutamate transporter EAAC1 (excitatory amino acid carrier-1). This effect is associated with redistribution of EAAC1 to the cell membrane and appears to be dependent on a particular PKC subtype, PKCalpha. In the present study, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 72 5 شماره
صفحات -
تاریخ انتشار 2007